room acoustics

FIFTH EDITION
Room Acoustics
Fifth Edition
Contents

Preface to the fifth edition ix
Preface to the fourth edition xi
Preface to the first edition xiii

Introduction 1

1 Some facts on sound waves, sources and hearing 7
 1.1 Basic relations, the wave equation 7
 1.2 Plane waves and spherical waves 9
 1.3 Energy density and intensity, radiation 14
 1.4 Signals and systems 16
 1.5 Sound pressure level and sound power level 22
 1.6 Some properties of human hearing 23
 1.7 Sound sources 27
 References 34

2 Reflection and scattering 35
 2.1 Reflection factor, absorption coefficient and wall impedance 36
 2.2 Sound reflection at normal incidence 37
 2.3 Sound reflection at oblique incidence 42
 2.4 A few examples 44
 2.5 Random sound incidence 52
 2.6 Reflection from finite-sized plane surfaces 55
 2.7 Scattering by wall irregularities 59
 References 66
Contents

3 *Sound waves in a room*
 3.1 Formal solution of the wave equation 68
 3.2 Normal modes in rectangular rooms with rigid boundaries 71
 3.3 Non-rigid walls 79
 3.4 Steady-state sound field 83
 3.5 Frequency and spatial averaging 91
 3.6 Decaying modes, reverberation 94
 References 99

4 *Geometrical room acoustics*
 4.1 Enclosures with plane walls, image sources 102
 4.2 The temporal distribution of reflections 109
 4.3 The directional distribution of reflections, diffuse sound field 114
 4.4 Enclosures with curved walls 116
 4.5 Enclosures with diffusely reflecting walls, radiosity integral 121
 References 126

5 *Reverberation and steady-state energy density*
 5.1 Basic properties and realisation of diffuse sound fields, energy balance 128
 5.2 Mean free path and average rate of reflections 133
 5.3 Sound decay and reverberation time 137
 5.4 The influence of unequal path lengths 141
 5.5 Enclosure driven by a sound source 145
 5.6 Application of the radiosity integral 148
 5.7 Sound propagation as a diffusion process 153
 5.8 Coupled rooms 154
 References 158

6 *Sound absorption and sound absorbers*
 6.1 The attenuation of sound in air 161
 6.2 Unavoidable wall absorption 163
 6.3 Sound absorption by membranes and perforated sheets 164
 6.4 Resonance absorbers 167
 6.5 Helmholtz resonators 171
 6.6 Sound absorption by porous materials 177
6.7 Audience and seat absorption 188
6.8 Miscellaneous objects 194
6.9 Anechoic rooms 199
References 202

7 Subjective room acoustics 204
7.1 Some general remarks on reflections and echoes 208
7.2 The perceptibility of reflections 210
7.3 Echoes and colouration 214
7.4 Early energy: definition, clarity index, speech transmission index 221
7.5 Reverberation and reverberance 229
7.6 Sound pressure level, strength factor 238
7.7 Spaciousness of sound fields 239
7.8 Assessment of concert hall acoustics 242
References 248

8 Measuring techniques in room acoustics 251
8.1 General remarks on instrumentation 252
8.2 Measurement of the impulse response 255
8.3 Examination of the impulse response 261
8.4 Measurement of reverberation 268
8.5 Diffusion 273
8.6 Sound absorption—tube methods 279
8.7 Sound absorption—reverberation chamber 284
8.8 Scattering coefficient 289
References 292

9 Design considerations and design procedures 294
9.1 Direct sound 295
9.2 Examination of the room shape 298
9.3 Reverberation time 304
9.4 Prediction of noise level 311
9.5 Acoustical scale models 316
9.6 Computer simulation 318
9.7 Auralisation 326
References 329
10 Electroacoustical systems in rooms

10.1 Loudspeaker directivity 332
10.2 Reach of a loudspeaker 337
10.3 A few remarks on loudspeaker positions 340
10.4 Acoustical feedback and its suppression 345
10.5 Reverberation enhancement with external reverberators 351
10.6 Reverberation enhancement by controlled feedback 358
References 363

List of symbols 365
Index 368
Preface to the fifth edition

I am delighted to present a new edition of my book *Room Acoustics*. Preparing a new edition enabled me to take into consideration some new publications in the field of room acoustics. Furthermore, several more conventional subjects which were not incorporated into the earlier editions, although being of great interest with regard to room acoustics, have been included, along with some new figures. The chapter on measuring techniques has been restructured because of the rapid progress in signal processing. Finally, the new edition has provided me with the opportunity to eliminate a number of incomplete, inaccurate or even misleading formulations or expressions and to replace them with more adequate ones.

Despite all these modifications and additions, the original translation by Professor Peter Lord, to whom I owe my sincere gratitude, is still the basis of this text. Once more, I would like to thank the publisher for giving me the opportunity to present a revised version of my work, as well as for their excellent cooperation.

Heinrich Kuttruff

Aachen
Preface to the fourth edition

Almost a decade has elapsed since the third edition and during this period many new ideas and methods have been introduced into room acoustics. I therefore welcome the opportunity to prepare a new edition of this book and to include the more important of those developments, while also introducing new topics which were not dealt with in earlier editions.

In room acoustics, as in many other technical fields, the digital computer has continued its triumphant progress; nowadays hardly any acoustical measurements are carried out without using a computer, allowing previously inconceivable improvements in accuracy and rapidity. Therefore, an update of the chapter on measuring techniques (Chapter 8) was essential. Furthermore, the increased availability of computers has opened new ways for the computation and simulation of sound fields in enclosures. These have led to better and more reliable methods in the practical design of halls; indeed, due to its flexibility and low cost, sound field simulation will probably replace the conventional scale model in the near future. Moreover, by simulation it can be demonstrated what a new theatre or concert hall which is still on the drawing board will sound like when completed ('auralisation'). These developments are described in Chapter 9, which contains a separate section on auralisation.

Also included in the new edition are sections on sound scattering and diffuse reflection, on sound reflection from curved walls, on sound absorption by several special arrangements (freely hanging porous material, Schroeder diffusers) and on the measurement of diffuse reflections from walls.

The preparation of a new edition offered the chance to present some subjects in a more comprehensive and logical way, to improve numerous text passages and formulae and to correct errors and mistakes that inevitably crept into the previous editions. I appreciate the suggestions of many critical readers, who drew my attention to weak or misleading material in the book. Most text passages, however, have been adopted from the previous editions.
without any changes. Therefore I want to express again my most sincere thanks to Professor Peter Lord of the University of Salford for his competent and sensitive translation. Finally, I want to thank the publishers for their cooperation in preparing this new edition.

Heinrich Kuttruff

Aachen
Preface to the first edition

This book is intended to present the fundamentals of room acoustics in a systematic and comprehensive way so that the information thus provided may be used for the acoustical design of rooms and as a guide to the techniques of associated measurement.

These fundamentals are twofold in nature: the generation and propagation of sound in an enclosure, which are physical processes which can be described without ambiguity in the language of the physicist and engineer; and the physiological and psychological factors, of prime importance but not capable of exact description even within our present state of knowledge. It is the interdependence and the equality of importance of both these aspects of acoustics which are characteristic of room acoustics, whether we are discussing questions of measuring techniques, acoustical design, or the installation of a public address system.

In the earlier part of the book ample space is devoted to the objective description of sound fields in enclosures, but, even at this stage, taking into account, as far as possible, the limitations imposed by the properties of our hearing. Equal weight is given to both the wave and geometrical description of sound fields, the former serving to provide a more basic understanding, the latter lending itself to practical application. In both instances, full use is made of statistical methods; therefore, a separate treatment of what is generally known as 'statistical room acoustics' has been dispensed with.

The treatment of absorption mechanisms is based upon the concept that a thorough understanding of the various absorbers is indispensable for the acoustician. However, in designing a room he will not, in all probability, attempt to calculate the absorptivity of a particular arrangement but instead will rely on collected measurements and data based on experience. It is for this reason that in the chapter on measuring techniques the methods of determining absorption are discussed in some detail.

Some difficulties were encountered in attempting to describe the factors which are important in the perception of sound in rooms, primarily because of the fragmentary nature of the present state of knowledge, which seems to
Preface to the first edition

consist of results of isolated experiments which are strongly influenced by the conditions under which they were performed.

We have refrained from giving examples of completed rooms to illustrate how the techniques of room acoustics can be applied. Instead, we have chosen to show how one can progress in designing a room and which parameters need to be considered. Furthermore, because model investigations have proved helpful these are described in detail.

Finally, there is a whole chapter devoted to the design of loudspeaker installations in rooms. This is to take account of the fact that nowadays electroacoustic installations are more than a mere crutch in that they frequently present, even in the most acoustically faultless room, the only means of transmitting the spoken word in an intelligible way. Actually, the installations and their performance play a more important role in determining the acoustical quality of what is heard than certain design details of the room itself.

The book should be understood in its entirety by readers with a reasonable mathematical background and some elementary knowledge of wave propagation. Certain hypotheses may be omitted without detriment by readers with more limited mathematical training.

The literature on room acoustics is so extensive that the author has made no attempt to provide an exhaustive list of references. References have only been given in those cases where the work has been directly mentioned in the text or in order to satisfy possible demand for more detailed information.

The author is greatly indebted to Professor Peter Lord of the University of Salford and Mrs Evelyn Robinson of Prestbury, Cheshire, for their painstaking translation of the German manuscript, and for their efforts to present some ideas expressed in my native language into colloquial English. Furthermore, the author wishes to express his appreciation to the publishers for this carefully prepared edition. Last, but not least, he wishes to thank his wife most sincerely for her patience in the face of numerous evenings and weekends which he has devoted to his manuscript.

Heinrich Kuttruff
Aachen
Introduction

We all know that a concert hall, theatre, lecture room or a church may have good or poor 'acoustics'. As far as speech in these rooms is concerned, it is relatively simple to make some sort of judgement on their quality by rating the ease with which the spoken word is understood. However, judging the acoustics of a concert hall or an opera house is generally more difficult, since it requires considerable experience, the opportunity for comparisons and a critical ear. Even so, the inexperienced cannot fail to learn about the acoustical reputation of a certain concert hall should they so desire, for instance by listening to the comments of others, or by reading the critical reviews of concerts in the press.

An everyday experience (although most people are not consciously aware of it) is that living rooms, offices, restaurants and all kinds of rooms for work can be acoustically satisfactory or unsatisfactory. Even rooms which are generally considered insignificant or spaces such as staircases, factories, passenger concourses in railway stations and airports may exhibit different acoustical properties; they may be especially noisy or exceptionally quiet, or they may differ in the ease with which announcements over the public address system can be understood. That is to say, even these spaces have 'acoustics' which may be satisfactory or less than satisfactory.

Despite the fact that people are subconsciously aware of the acoustics to which they are daily subjected, there are only a few who can explain what they really mean by 'good or poor acoustics' and who understand factors which influence or give rise to certain acoustical properties. Even fewer people know that the acoustics of a room is governed by principles which are amenable to scientific treatment. It is frequently thought that the acoustical design of a room is a matter of chance, and that good acoustics cannot be designed into a room with the same precision as a nuclear reactor or space vehicle is designed. This idea is supported by the fact that opinions on the acoustics of a certain room or hall frequently differ as widely as the opinions on the literary qualities of a new book or on the architectural design of a new building. Furthermore, it is well known that sensational failures in this field do occur from time to time. These and similar anomalies
add even more weight to the general belief that the acoustics of a room is beyond the scope of calculation or prediction, at least with any reliability, and hence the study of room acoustics is an art rather than an exact science.

In order to shed more light on the nature of room acoustics, let us first compare it to a related field: the design and construction of musical instruments. This comparison is not as senseless as it may appear at first sight, since a concert hall too may be regarded as a large musical instrument, the shape and material of which determine to a considerable extent what the listener will hear. Musical instruments—string instruments for instance—are, as is well known, not designed or built by scientifically trained acousticians but, fortunately, by people who have acquired the necessary experience through long and systematic practical training. Designing or building musical instruments is therefore not a technical or scientific discipline but a sort of craft, or an ‘art’ in the classical meaning of this word.

Nevertheless, there is no doubt that the way in which a musical instrument functions, i.e. the mechanism of sound generation, the determining of the pitch of the tones generated and their timbre through certain resonances, as well as their radiation into the surrounding air, are all purely physical processes and can therefore be understood rationally, at least in principle. Similarly, there is no mystery in the choice of materials; their mechanical and acoustical properties can be defined by measurements to any required degree of accuracy. (How well these properties can be reproduced is another problem.) Thus, there is nothing intangible nor is there any magic in the construction of a musical instrument: many particular problems which are still unsolved will be understood in the not too distant future. Then one will doubtless be in a position to design a musical instrument according to scientific methods, i.e. not only to predict its timbre but also to give, with scientific accuracy, details for its construction, all of which are necessary to obtain prescribed or desired acoustical qualities.

Room acoustics is in a different position from musical instrument acoustics in that the end product is usually more costly by orders of magnitude. Furthermore, rooms are produced in much smaller numbers and have by no means geometrical shapes which remain unmodified through the centuries. On the contrary, every architect, by the very nature of his profession, strives to create something which is entirely new and original. The materials used are also subject to the rapid development of building technology. Therefore, it is impossible to collect in a purely empirical manner sufficient know-how from which reliable rules for the acoustical design of rooms or halls can be distilled. An acoustical consultant is confronted with quite a new situation with each task, each theatre, concert hall or lecture room to be designed, and it is of little value simply to transfer the experience of former cases to the new project if nothing is known about the conditions under which the transfer may be safely made.
This is in contrast to the making of a musical instrument where the use of unconventional materials as well as the application of new shapes is either firmly rejected as an offence against sacred traditions or dismissed as a whim. As a consequence, time has been sufficient to develop well-established empirical rules. And if their application happens to fail in one case or another, the faulty product is abandoned or withdrawn from service—which is not true for large rooms in an analogous situation.

For the above reasons, the acoustician has been compelled to study sound propagation in closed spaces with increasing thoroughness and to develop the knowledge in this field much further than is the case with musical instruments, even though the acoustical behaviour of a large hall is considerably more complex and involved. Thus, room acoustics has become a science during the past century and those who practise it on a purely empirical basis will fail sooner or later, like a bridge builder who waives calculations and relies on experience or empiricism.

On the other hand, the present level of reliable knowledge in room acoustics is not particularly advanced. Many important factors influencing the acoustical qualities of large rooms are understood only incompletely or even not at all. As will be explained below in more detail, this is due to the complexity of sound fields in closed spaces—or, as may be said equally well—to the large number of ‘degrees of freedom’ which we have to deal with. Another difficulty is that the acoustical quality of a room ultimately has to be proved by subjective judgements.

In order to gain more understanding about the sort of questions which can be answered eventually by scientific room acoustics, let us look over the procedures for designing the acoustics of a large room. If this room is to be newly built, some ideas will exist as to its intended use. It will have been established, for example, whether it is to be used for the showing of ciné films, for sports events, for concerts or as an open-plan office. One of the first tasks of the consultant is to translate these ideas concerning the practical use into the language of objective sound field parameters and to fix values for them which he thinks will best meet the requirements. During this step he has to keep in mind the limitations and peculiarities of our subjective listening abilities. (It does not make sense, for instance, to fix the duration of sound decay with an accuracy of 1% if no one can subjectively distinguish such small differences.) Ideally, the next step would be to determine the shape of the hall, to choose the materials to be used, to plan the arrangement of the audience, of the orchestra and of other sound sources, and to do all this in such a way that the sound field configuration will develop which has previously been found to be the optimum for the intended purpose. In practice, however, the architect will have worked out already a preliminary design, certain features of which he considers imperative. In this case the acoustical consultant has to examine the objective acoustical properties of the design by calculation, by geometric ray considerations, by model investigations or
by computer simulation, and he will eventually have to submit proposals for suitable adjustments. As a general rule there will have to be some compromise in order to obtain a reasonable result.

Frequently the problem is refurbishment of an existing hall, either to remove architectural, acoustical or other technical defects or to adapt it to a new purpose which was not intended when the hall was originally planned. In this case an acoustical diagnosis has to be made first on the basis of appropriate measurement. A reliable measuring technique which yields objective quantities, which are subjectively meaningful at the same time, is an indispensable tool of the acoustician. The subsequent therapeutic step is essentially the same as described above: the acoustical consultant has to propose measures which would result in the intended objective changes in the sound field and consequently in the subjective impressions of the listeners.

In any case, the acoustician is faced with a two-fold problem: on the one hand he has to find and to apply the relations between the structural features of a room—such as shape, materials and so on—with the sound field which will occur in it, and on the other hand he has to take into consideration as far as possible the interrelations between the objective and measurable sound field parameters and the specific subjective hearing impressions effected by them. Whereas the first problem lies completely in the realm of technical reasoning, it is the latter problem which makes room acoustics different from many other technical disciplines in that the success or failure of an acoustical design has finally to be decided by the collective judgement of all ‘consumers’, i.e. by some sort of average, taken over the comments of individuals with widely varying intellectual, educational and aesthetic backgrounds. The measurement of sound field parameters can replace to a certain extent systematic or sporadic questioning of listeners. But, in the final analysis, it is the average opinion of listeners which decides whether the acoustics of a room is favourable or poor. If the majority of the audience (or that part which is vocal) cannot understand what a speaker is saying, or thinks that the sound of an orchestra in a certain hall is too dry, too weak or indistinct, then even though the measured reverberation time is appropriate, or the local or directional distribution of sound is uniform, the listener is always right; the hall does have acoustical deficiencies.

Therefore, acoustical measuring techniques can only be a substitute for the investigation of public opinion on the acoustical qualities of a room and it will serve its purpose better the closer the measured sound field parameters are related to subjective listening categories. Not only must the measuring techniques take into account the hearing response of the listeners but the acoustical theory too will only provide meaningful information if it takes regard of the consumer’s particular listening abilities. It should be mentioned at this point that the sound field in a real room is so complicated that it is not open to exact mathematical treatment. The reason for this is the large number of components which make up the sound field in a closed space regardless
of whether we describe it in terms of vibrational modes or, if we prefer, in terms of sound rays which have undergone one or more reflections from boundaries. Each of these components depends on the sound source, the shape of the room and on the materials from which it is made; accordingly, the exact computation of the sound field is usually quite involved. Supposing this procedure were possible with reasonable expenditure, the results would be so confusing that such a treatment would not provide a comprehensive survey and hence would not be of any practical use. For this reason, approximations and simplifications are inevitable; the totality of possible sound field data has to be reduced to averages or average functions which are more tractable and condensed to provide a clearer picture. This is why we have to resort so frequently to statistical methods and models in room acoustics, whichever way we attempt to describe sound fields. The problem is to perform these reductions and simplifications once again in accordance with the properties of human hearing, i.e. in such a way that the remaining average parameters correspond as closely as possible to particular subjective sensations.

From this it follows that essential progress in room acoustics depends to a large extent on the advances in psychological acoustics. As long as the physiological and psychological processes which are involved in hearing are not completely understood, the relevant relations between objective stimuli and subjective sensations must be investigated empirically—and should be taken into account when designing the acoustics of a room.

Many interesting relations of this kind have been detected and successfully investigated during the past few decades. But other questions which are no less important for room acoustics are unanswered so far, and much work remains to be carried out in this field.

It is, of course, the purpose of all efforts in room acoustics to avoid acoustical deficiencies and mistakes. It should be mentioned, on the other hand, that it is neither desirable nor possible to create the ‘ideal acoustical environment’ for concerts and theatres. It is a fact that the enjoyment when listening to music is a matter not only of the measurable sound waves hitting the ear but also of the listener’s personal attitude and his individual taste, and these vary from one person to another. For this reason there will always be varying shades of opinion concerning the acoustics of even the most marvellous concert hall. For the same reason, one can easily imagine a wide variety of concert halls with excellent, but nevertheless different, acoustics. It is this ‘lack of uniformity’ which is characteristic of the subject of room acoustics, and which is responsible for many of its difficulties, but it also accounts for the continuous power of attraction it exerts on many acousticians.