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Foreword

A new class of models, formalisms, and mechanisms for describing concurrent
and distributed computations has emerged over the last few years. A character-
istic feature of members of this class is that they are based on (generative)
communication via a shared data space. They are called coordination languages
and models.

This volume contains the proceedings of the First International Conference
on Coordination Models and Languages (COORDINATION’96), held in Cesena
(Italy) 15-17 April 1996.

In response to the call for papers, 78 papers were submitted to COORDI-
NATION’96. All submitted papers were reviewed by at least 3 reviewers. The
programme committee met at Imperial College (London) on 11 December 1995
and selected 21 regular papers. A further 10 papers were selected as short pa-
pers, to be presented at a poster session; these are included in this volume after
the regular papers.

The programme committee invited Jean-Pierre Banatre, Ugo Montanari, and
Peter Wegner to give invited talks; these are included in this volume before the
regular papers.

We thank all members of the programme committee and their sub-referees;
they are listed on the following pages. We would also like to thank Roberto
Gorrieri, the local arrangements chairperson, and Juarez Muylaert Filho and
David Cohen for their assistance in processing the referees’ reports. The follow-
ing organisations provided sponsorship for the conference: Fondazione Cassa di
Risparmio di Cesena, Italian National Research Council (C.N.R.), Comune di
Cesena, Provincia di Forli-Cesena, Olidata, Sun Microsystems, Silicon Graphics,
Ascom TCS Safnat S.p.A., Link s.r.l., Libreria Minerva, and Cremonini Fabio
s.r.l.. Finally, we would not have had the inspiration for arranging this confer-
ence had it not been for the EU-funded project COORDINATION; the project
has provided partial financial support for a number of the European programme
committee members,

April 1996 Paolo Ciancarini and Chris Hankin
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Parallel Multiset Processing:
From Explicit Coordination to Chemical Reaction

Jean-Pierre Banatre

Irisa / Universiti de Rennes 1 / Inria
Campus de Beaulien
35042 Rennes cedex - France

Abstract:

The author has been involved for more than fifteen years in the design, study
and implementation of coordination program structures. These structures were
designed with a clear conviction that data structuring and program structur-
ing were two closely related issues. Very early, it was recognized that set data
structuring was a key concept for the design of programs with a high potential
for parallelism. This paper offers a personal perspective of this research activity
which culminated with the Gamma formalism.

1 Introduction

Parallelism is a powerful structuring concept that could facilitate program con-
struction. As stated in [3], two kinds of parallelism have to be distinguished :
physical parallelism and logical parallelism. Physical parallelism is related to the
organisation of the computation on a set of processors. By logical parallelism, we
mean the possibility of describing a program as a set of cooperating processes.
In this paper, we are only concerned with “logical parallelism”.

The confusion between these two kinds of parallelism comes from the heritage
of several decades of imperative culture and the impact of the Von Neumann
model of computation. The sequencing operator together with assignment are
the basic means of abstracting the mode of operation of the Von Neumann
machine. They have been further developed with the introduction of the loop
control structure and of the array data structure. Let us take the simple example
of computing the maximum element of a set of values. In an imperative setting,
the set will be represented by an array a [/ : n] and a possible solution will be :

max.set : m := a[l];
1:=1;
#[i < n —i:= i+ 1;m:= maz(m, afi]))

while the condition 7 < n holds, index ¢ is incremented and a new local maximum
is computed.

Two decisions have led to this highly sequential program : the choice of rep-
resenting a set by an array, thus introducing an ordering between elements, and
the use of a loop program structure for computing ¢ and m.



The maximum element can in fact: be .computed by performing the compar-
isons of the elements in any order : every “confrontation” between two elements
cancels the smaller one, and the unique remaining element will be the maximum.
As will be seen later, this sentence describes an algorithm which can be readily
written in Gamma [3].

The above example raises another crucial point. There is a very strong corre-
lation between control structures and data structures. One knows that a variable,
say v, represents a sequence whose successive elements verify a recurrence rela-
tionship of the form : v; = ¢ (v;~1), ¢ representing the body of the loop which
computes v. It is also well-known that recursive data structures (like lists) are
naturally exploited by using recursive control structures. In this paper, we will
examine how appropriate control structures may be designed in order to carry
out computations on general data structures such as multisets. Our aim will
be the design of high-level programs which reflect the logical properties of the
problem to solve, without any artificial sequentiality.

Section 2 describes coordinations structures which have been developed in
order to process dynamic sets. Section 3 discusses the evolution from these struc-
tures to the Gamma formalism which is sketched in section 4.

2 Coordination structures for dynamic multiset
processsing

This section gives an overview of work which was carried out fifteen years ago
in a compiler design project [1,2]. In this context, it was recognized that proper
control structures over proper data structures clearly enabled the user to better
express the solutions of complex programming problems.

2.1 The notion of event

An event (called “future” in other contexts) can be seen as a single assignment
variable [1]. The value of such variables may be requested in a computation
before being actually produced. In this case, the computation demanding the
value is simply suspended ; it is resumed when the value is known. Of course,
the introduction of events comes with the possibility of dynamically creating
processes. Here is a sample of program involving events and processes :

begin
(1) event int z;

(2) activate (---z---);# process Pi#
B) z«3
(4) activate (---z---); # process Po#

end



An event whose value is:of type integer is declared in (1). In (2), the process
P, is created. It will happen to be suspended, if & has not been assigned a value
when it is accessed. The value 3 is assigned to x in (3) and finally a new process
(say P2) is created in (4). This process will not be interrupted because of x.

The concept of event has been largely used to simply solve the problem of
forward referencing while constructing an Algol 68 compiler [1].

Another particular hard problem to deal with in the construction of compilers
and operating systems is the management of dynamic identifier tables, i.e., tables
whose cardinality cannot be known statically. Awkward sequential solutions are
usually used (based on a priori fixed cardinality, which may reveal to be badly
chosen or using dynamic data structures such as lists). Examining the very nature
of these tables, it was clear that they would be better represented as sets rather
than as arrays. Proceeding this way, they would also be naturally exploited in a
parallel way.

Furthermore, the contents of these tables is built incrementally and their
components can be seen as events whose values are determined as the computa-
tion progresses.

2.2 Dynamic sets of events

A set (say, s) of events of type event m is declared as vse m s ; vse stands
for “varisized set of events”. The generation of a new component belonging to
s 1s expressed by s « v, which means that one of the components of s gets its
value, v. The cardinality of dynamic sets is itself an event. The value of this
event is determined when some condition is realized during the computation.
The primitive close s is used to signify that the vse s is completed.

Now we know how to declare and build vse’s, but we haven’t said yet how
they can be exploited.

The control structure which was proposed in [2] acts as a process generator.
As soon as a new element is introduced in a vse, s, new processes are generated
which deal with s. Syntactically, this program structure can be described as :

for all elts of s do < process body > od

This peculiar loop acts as a process generator : when a new element s;
is added to s, an instance of < process body > dealing with s; is spawn. In
< process body >,s; is referred to as this s ; this is simply a generic naming
facility. Of course, several process generators may be associated to the same wvse
and elements s; will, in general, be exploited by a “bunch” of processes.

In order to complete the above control structure, a coordination facility was
added ; it allows the creation of an “epilogue” process, when all processes created
by a given process generator have been completed. So the final format of our
control structure is :

for all elts of s do < process body > od
at end < epilogue > end



More informations about wvse’s and associated control structures may be found
in [2]. Next, we present an example illustrating the elegance of these data and
program structures.

2.3 A general identifier binder

We consider the problem of associating an identifier to its declarations in a block
structured language following the usual Algol/Pascal rules. For simplicity sake,
we use the following grammar to describe the language :

< block > ::=begin $ beg$ <body > end $ed §
< body > = < sentence > | < sentence >;< body >
< sentence > = var < identifier > § var ident § |
< identifier > $ occur ident $|
< block >
< identifier > ::= # usual notation for identifiers #

A block is a sequence of declarations and instructions. An instruction is either
the occurrence of a variable or a nested block.

Symbols between $ are transmitted by the parser to the semantic analyser
which performs identifier binding. Symbols produced by the parser are accessed

sequentially by successive requests to the process rsd (for read syntactic data).

The solution we propose can be written as follows :



procpidentification = ((identifier — void) enclosing_block_search) void :
begin
vse identifier id_table ;
procp search = (identifier ¢ )void :
begin
activate
(bool success := false ;
for all elt of id_table
do
[z = this id-table — success := true
a
z # this id_table — null
]
od
at end
[ not success — enclosing_block search ()
a

success — print (z, “successfull binding”)

]

end
)
end search ;
*[rsd ? symbol —
[symbol = beg — identification (search)
o
symbol = (var, z) — id_table « z
o

symbol = (occur, z) — search (z)
a

symbol = ed — close id_table

]

end identification ;

Neither “identification” nor search are exactly procedures because they can cre-
ate activities (processes) which may survive their own termination. For this
reason, we prefix them with procp which recalls procedure and process. The
notation (identifier — void) describes the functional type of the procp “enclos-
ing block.search”. Otherwise, we have used a CSP-like notation [11] to describe
process behaviour.

Several comments may be made about this program :

1. It does not introduce superfluous data structures (only wse id_table is used).
2. It makes an intensive use of coordination structures : recursion for dealing
with block nesting, higher-order functions for transfering a computation from



recursion level n+1 to recursion level n. This is necessary for achieving proper
binding.

3. The indentifier table is processed without introducing any artificial sequen-
tiality.

4. In order to detect missing declarations, the compiler provides the procedure
mission_declaration, defined as :

proc missing-declaration = (identifier ) void :
begin
print (z, “cannot be identified”)
end missing.declaration ;

The initial call to identification is : identification (missing_-declaration) ; If
an identifier belonging to a block b cannot be bound to any declaration after
invocation of search procedures associated with b and with all blocks enclos-
ing b, the default procedure missing_declaration is invoked and produces the
appropriate error message.

3 A smooth transition to Gamma

We believe that the above program is very elegant and clean ; it introduces as
few data structures as possible and in particular, it avoids the use of intermediate
data structures for emulating coordination structures.

However, dynamic sets of events are well adapted to the processing of very
homogeneous sets because all the elements are associated with the same treat-
ment. This may suggest that only a limited class of algorithms can be described
with these structures. As far as software quality is concerned, one can realize
that the provision of high-level data and coordination structures relieves the
programmer from managing complex data structures. So, one can expect better
quality programs.

Nevertheless, programs are seen as sets of processes which communicate and
synchronize via events. It is recognized that reasoning and proving properties of
such programs is very difficult, if not impossible, with the present tools. Then,
our objective was to find more descriptive ways of computing over multisets.
Further work was directed by the following observations :

1. The multiset is the less constraining data structure. There is no form of
hierarchy in a multiset and there can be multiple occurrences of the same
element.

2. A special ordering has been proposed on multisets [6]. Using such an order-
ing, it should be possible to prove termination properties.

3. In order to reason on multiset ordering, the computation should act as a
multiset transformer.

Initial thinking let us to a proposal where a process was attached to every
value of the multiset and a special value (weight) was associated to every such
process [7]. Two processes could communicate if their respective weights were



related by a certain condition. The computation was considered as stable as soon
as all conditions were false. Those familiar with Gamma will identify the chaotic
behaviour of Gamma computations. This approach was still operational in its
spirit, but there was a first step towards property proving (termination).

During some years, there was not much progress till discussions with Daniel
Le Métayer lead to the present day Gamma formalism. Daniel was quite influ-
enced by functional programming and in particular by Backus’s work on FP
languages [8]. The locality principle that is often put forward to qualify Gamma
behaviour comes directly from the functional world. Furthermore, the functional
approach was very precious for our objectives in formal property proving. So,
the synthesis between parallel multiset processing and functional programming
gave birth to Gamma which is sketched in the next section.

4 A short trip in the Gamma world

The purpose of this section is not a new survey of the work achieved on Gamma
[5]. We simply want to convey the spirit of the language through a short selection
of examples. The interested reader can find in [5] a more comprehensive account
of the work done on Gamma during the last ten years.

4.1 A short introduction to Gamma

The Gamma formalism was proposed ten years ago to capture the intuition of
a computation as a global evolution of a collection of atomic values “interact-
ing” freely. Gamma can be introduced intuitively through the chemical reaction
metaphor. The unique data structure is the multiset which can be seen as chemi-
cal solution. A program is simply a pair (Reaction condition, Action). Execution
proceeds by replacing in the multiset elements satisfying the reaction condition
by the results of the action. The final result is obtained when a stable state is
reached, that is to say when no more reactions can take place. The maximum
element problem of the introduction can be solved by the following Gamma
program :
max:zr,y—y<=z<y

This program simply says that if two elements z, y are such that z < y, then
these elements are replaced by y (the greater). Of course, nothing is specified
about the order of evaluation of the comparisons. If several disjoint pairs of
elements verify the condition, the corresponding reactions can be performed in
parallel.

4.2 A selection of Gamma programs

We illustrate the Gamma style of programming through a set of selected exam-
ples, illustrating the elegance of the formalism.



Prime number generation

Goal : produce the prime numbers less than a given N.

Solution :
primes (N) = rem {2---N}
rem : z,y — y <= multiple (z,y)

Number sorting

Goal : sort a set of numbers, each number being represented by a pair (index,
value)

Solution :
Sort : (i,2),(j,y) — (4,9),(,x) == (> ) A (z<y)

Factorial

Goal : compute N !

Solution :
factorial (N) = fact {2---N}
fact : 2,y — z * y <= true

The majority element problem

Goal : compute the majority element of a multiset M. This element appears
more than card (M)/2 times in the multiset. For simplicity sake, we assume
that such an element exists. The operation one of extracts a random element
from a multiset.

Solution :
MAJ = one of maj (M)
maj :z,y — {} <= z#y

Convex hull

Goal : compute the smallest convext polygon containing a set of points in the
plane

solution :
convex : Py, Py, P3, P4 — Py, Py, P3 <= P, inside < Py, P;, P3s >
Pi's are points and P4 is “inside” < Py, Ps, P3 > if P4 is within the triangle
they form.



The dining philosophers
Goal : solve the traditional dining philosopher problem.

Solution : o
phil 15,0 2 @i <= j=ip1
$i = pi, pig1 <= true

This solution contains two rules describing the two possible transitions : a
thinking philosopher is allowed to eat (he/she gets two forks ¢;, @ig1) or an
eating philosopher ¢ starts thinking (he/she releases two forks ¢;, 1g91). ®
represents addition modulo 5, if we consider five philosophers.

- This small set of examples demonstrates the richness and power of the
Gamma paradigm. Many more examples are presented in [3].

4.3 Systematic program construction in Gamma

The most attractive properties of Gamma (high-level data structuring, locality
principle) have been exploited in the design of a derivation method which can
be applied to develop totally correct Gamma programs [4].

The derivation method is inspired by the work of Dijkstra [9] and Gries [10].
The method is composed of four stages. The first one is the transformation of
the specification and its split into and invariant and a termination condition. In
the second stage, the reaction condition is derived from the termination condi-
tion. The third stage is the deduction of the action from the invariant and the
termination condition. The last stage is the derivation of a well-founded ordering
from the action and the invariant for proving termination.

We will not review in detail this method, we will simply sketch the derivation
of a sorting algorithm.

Specification

A natural data structure to describe a sorted set of values is the sequence. This
sequence must be encoded within a multiset ; we choose a multiset M of pairs
(index, value), where z.i of an element « gives the position of the value z.v in the
sequence. Let M, be the initial multiset ; a possible specification of the result
Mis:
1s OV, yeM,z-i<y-i=>z-v<y-v
(2) M -i={1--card (Mp)}
(3) M v = Mo

1. Split of the specification

We may choose I = (2)A (3) because (2) and (3) can be established in a
straightforward way from Mp. I means that values are evenly distributed on
the range 1-- card (My). The termination condition 7" is (1) which must
hold at the end of the computation.
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2. Reaction condition

The reaction condition can be derived in a straightforward way by negating
T. So, we get :

Rz,y)=(z-i<y-)A(z-v>y-v)

3. Action

The action must transform the multiset while maintaining the invariant. A
simple reasoning shows that the only possible choice is :

Az, y) ={(z-i,y-v),(y-%,2-v)}

The elements (z-i,« -v) and (y -4,y - v) which are ill-ordered are replaced
by (z-i,y-v) and (y - ¢,z - v) which are correctly ordered.

4. Well-founded ordering

In order to prove the termination of a Gamma program, we have to provide
a well-founded ordering on multisets and to show that the application of the
action decreases the multiset according to this ordering. We use a result of
[6] allowing the derivation of a well-founded ordering on multisets from a
well-founded ordering on elements of the multiset. Let > be an ordering on
S and >> be the ordering on multisets M (S) defined in the following way :

M > M' <> 3X € M(S),3Y € M(S) such that
(XZ{QANXCMAM =(M-X)+YAWeY,Izec X,z >y)

The ordering >> on M(S) is well-founded if and only if the ordering > on S
is well-founded.

In order to prove the termination of our sort program, we can use the fol-
lowing well-founded ordering [4] on the elements of the multiset :

(Gz)C (2 <=i>iN' >z

This completes the derivation of the program presented earlier in section 4.2.

The derivation strategy which has been quickly developed here, has been
applied successfully to a lot of non-trivial examples as described in [4]. We be-
lieve that this formal derivation process was made possible by the fact that, in
Gamma, a program is no longer a sequence of instructions modifying a state,
but rather a multiset transformer operating on all the data at once.

5 Conclusion

This paper describes a personal view of the genesis of Gamma. It all happened
because we were searching for paradigms that were relying on very few high-level
data structuring facilities which do not introduce any non-logical dependencies
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between data. The multiset appears to be the ideal data structure. Then the
question was : how to exploit multisets with language structures introducing
no articial sequentiality and favoring formal reasoning. The outcome was this
notion of dynamic set of events and its associate control structures which, after
various influences, led to the Gamma formalism. We have stressed the simplicity
and elegance of the Gamma formalism and of Gamma programs ; we have also
shown how to develop Gamma programs from a specification in a systematic way.
Much more could have been said (implementation, extensions - - -), the interested
reader find a review of past work and current perspectives on Gamma in [5].
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Abstract. In this extended abstract we describe our approach to mod-
elling the dynamics of distributed systems. For distributed systems we
mean systems consisting of concurrent processes communicating via shared
ports and posing certain synchronization requirements, via the ports, to
the adjacent processes. We use graphs to represent states of such sys-
tems, and graph rewriting to represent their evolution. The kind of graph
rewriting we use is based on simple context-free productions which are
however combined by means of the synchronization mechanism. This al-
lows for a good level of expressivity in the system without sacrifying full
distribution. Moreover, to approach the problem of combining produc-
tions together, we suggest to exploit existing techniques for constraint
solving. This is based on the observation that the combination problem
can be modelled as a (finite domain) constraint problem. In this respect,
we propose to use both local consistency techniques, to remove the possi-
ble redundancies in a system state, and a distributed backtracking search
algorithm, as used in distributed constraint solving. Our method has two
main advantages: first, it is completely formal and thus provides a precise
description of the way a distributed system evolves; second, it also seems
very promising from the performance point of view, since the techniques
we propose to combine productions together have been proven very con-
venient in several cases.

1 Introduction

Among the many formalisms that can be chosen to represent distributed sys-
tems and their evolutions, we believe that graphs and graph grammars [Ehr78,
Ehr87, SE94, SPvE92, CM95] are among the most convenient, both in terms
of expressivity and of technical background. In fact, graphs describe in a nat-
ural way net topologies and data sharing, and moreover they possess a wide
literature and technical results which make the whole field of graph rewriting
very formal and its notions precisely definable. Therefore, consider a distributed
system consisting of concurrent processes communicating via pieces of shared
data (or channels, or ports). Then such a system can be represented as a graph



